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EXPERIMENTAL USE OF
A PROGRAMMING LANGUAGE (APL)

AT THE GODDARD SPACE FLIGHT CENTER

Edited By

Cyrus J. Creveling
Information Processing Division

ABSTRACT

This document is intended to explain what APL is, and to
describe the experiment that the Information Processing Division
(IPD) has undertaken to introduce APL to the Goddard Scientific
Community. We have prepared a brief historical sketch of
steps taken to date and have provided some illustrative examples
of how APL has actually been used at the Goddard Space Flight
Center.
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EXPERIMENTAL USE OP
A PROGRAMMING LANGUAGE (APL)

AT THE GODDARD SPACE FLIGHT CENTER

wilAT API, IS

APL is an abbreviation of A Programming Language, a mathematical
development of Br. K. E. Iverson and associates having special attributes
for the design and specifications of digital computing systems, both "hard-
ware" and "software." It embraces ordinary computational arithmetic, alge-
braic formulae, the logical calculus (Boolean Algebra), and has special
features for matrix manipulations.. Although the language stands on its own
as a mental concept, and as such is not implicitly related to any computational
device (it is not "hardware oriented"), it has been "implemented" on more than
one large scale computer and sonic smaller ones. This fact is of considerable
importance in attempting to assess the future impact on the computer pro-
gramming field, since APL is capable of competing with other computer
languages including such well-established ones as Fortran and Algol.

SOME CHARACTERISTICS OF' API,

Being a form of mathematical notation, API, has most of the attributes
of the more common forms. It is composed of a small number of primitives,
and these can be rigorously combined or redefined in terms of each other in
a useful manner. Like algebra and trigonometry, this allows a continual re-
finement of statements, originally long and diffuse, into shorter and more
elegant forms. This flexibility and the conciseness to which it leads is useful
in that it makes possible the successive compaction of long but woll-uuder-
stood expressions into short recognizable terms.

This feature leads to Iverson's "aesthetic criteria" design attribute,
wherein the designer (or prograln writer) is guided as much by his intuitive
"feel" for the tractability ()I' his problems as with a strictly rigorous and
systematic development.

APL is easy to learn, because it has a simple syntax, relatively few
primitives and new symbols (most of which have a mnemonic structure), and
makes a maximum use ()I' existing mathematics. These facts make it approach
the condition of being self-documenting, since it is analogous to a mathematical
derivation in which few marginal notes or parenthetical explanations are re-
quired.

1
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APL is uncommitted to any particular technology or type of problem.
Its character set (available on a ''selectric" type ball) can be accommodated by
a standard typewriter of approximately 100 characters (upper and lower case).

HISTORICAL 13ACKG ROUND

APL was introduced to GSFC in 1965 by Dr. E. P. Stabler, University
of Syracuse, a summer employee, in the performance of a computer design
task. The example of his application of APL to a complex hardware/software
design problem excited our interest in seeing if a widespread application of
such a so-called Higher-Order Language (IIOL) to typical Goddard problems
might solve certain outstanding semantic problems endemic in our establish-
ment. These problems of mutual understanding between the several disparate
disciplines, forced into cooperative space projects of great complexity, are
often referred to as "failure to communicate" or semantic difficulties. The
results of these problems are felt in the long and difficult procedures neces-
sary to eliminate malfunction, nonfunctions, and misfunctions, before and
after satellites are launched. Under the press of tight schedules, these prob-
lems occasionally degenerate into personal recriminations, when a dispas-
sionate review would probably indicate a mutual misunderstanding based on an
incomplete or ambiguous specification at an interdisciplinary interface.

Dr. Stabler's thesis, taken from Dr. K. E. Iverson, author of A Pro-
gramming Language (Wiley, 1962), is that APL, being basically a form of
mathematics, and amenable to standard mathematical manipulation, is pre-
cise, comprehensive, and can be understood by physicists, engineers, and
computer programmers alike. It embraces standard computational notation,
Boolean operators, logical calculus, and has some novel features of particular
power in matrix manipulations and in standard computer operation (such as
sorting, listing, etc.).

Following these principles, the Information Processiog Division and the
Employee Development Bvanch (MUD) sponsored a short course in Higher-
Order Languages. This course, taught at Goddard in April 1966 by
Dr. Yaohan Chu of the University of Maryland,- explored the applicability of
several computer languages to digital design and computational problems.

Since the results of the course were generally favorable, we organi:zed a
Higher-Order Language Seminar, held at GSFC June 16, 1966, uncle? the
chairmanship of Dr. George II. Ludwig. Panelists were Dr. lc,. E. Iverson,
IBM; Dr. C. A. Wogrin, Yale University; Dr, E. P. Stabler, Syracuse Uni-
versity; Dr, Yaohan Chu of the University of Maryland; Mr. Thomas Gorman

9



and Mr. Cyrus J. Creveling of GSFC (all technologists): and Mr. James Bostain
of the Institute of Foreign. Affairs, a linguist. The merits of various approaches
to the computer design and specification and programming language problems
were discussed and from these discussions came the resolve on the part of
the IPD to conduct an in-depth experiment in the use of APL. The deciding
factor was the information that APL had been implemented on an IBM System
360 computer with many remote terminals connected in a time-sharing mode.
With an offer from Dr. Iverson to conduct a class in APL at Goddard, using
10 IBM-type 1050 computer terminals, we planned a class of between 30 and
40 Goddard personnel for a two-week course. First, a select group consisting
of Dr. George Ludwig, Mrs. Melba Mouton, Mr. Thomas P. Gorman,
Mr. Bill Mish, Mr. William Alford, Mr. Larry Hyatt, and Mr. Cyrus J.
Creveling from GSFC spent a week at the Watson Research Labs, indoctrinating
Dr. Iverson's staff in the types and range of problems of interest to Goddard.
The ensuing 10 -clay course was well attended and created very favorable im-
pressions. A number of demonstrations of APL were made during these two
weeks, including one to Goddard's Director, Dr. Clark, and to Mr. Mengel,
Assistant Director for Tracking and Data Systems.

Following the initial course at GSFC, three IBM 1050 computer terminals
were retained in the Information Processing Division to provide continuity of
use, and these have been augmented since then so there are now six APL
terminals connected by leased telephone lines to Yorktown Heights, New York.
(For this use we pay nominal fees for connection to the computer of S2. 50/hour,
and for central processor time of $2.20/minute, per terminal.)

As a means of attracting attention to our A PL experiment, the program
committee of the Engineering Lecture Series \vas induced to invite Dr. K. E.
Iverson of the IBM Watson Research Center, Yorktown Heights, New York, to
make an address in the Goddard Engineering Lecture Series on January 18,
1967. This lecture featuring the use of a working computer terminal on the
stage of the auditorium and a closed-television view of the keyboard on the
screen attracted a "standing room only" audience.

In the ensuing years (1967, 1968), the Information Processing Division
(IPD) in conjunction with GSFC Employee Development Branch, Manpower
Utilization Division, has offered a succession of short courses in APL in which
about 220 individuals have been afforded an opportunity to learn enough of the
language to make use of it in their everyday work. Staff members of the IPD
taught a short course for the benefit of the 1967 Summer Workshop, one of the
results of which is published in the article by Dr. Mansour Javid.



CHRONOLOGY OF MAJOR EVENTS

Yaohan Chu, An Introduction to Higher-Order Languages, GSFC, 1966
Higher-Order Language Seminar, June 16, 1966
:Preparatory Class, Yorktown Heights, October 10-14, 196ii
Iverson's Class in APL, October 1966
Morton's Class in APL, March 1967
Short Course, June 19-27, Alford, Bonk, Fleming, McNamara, Vaughan,

Bouricious, Instructors
Higher-Order Language Seminar, November 22, 1967, Bob Fisk's Class

in APL
Iverson's Lecture (Engineering Lecture Series) (Tape)
Applied Mathematician's Video Experiment at Yorktown Heights,

June 1968
Pilot Video Course in APL at Goddard Space Flight Center, 1968

EXPERIENCES OF SELECTED INDIVIDUAL USERS

There have been numerous individuals who have had their curiosity ex-
cited to the extent of learning APL on their own, and this is entirely feasible
with or without a computer terminal available. When polled, members of the
first class, which made extensive use of the terminals, were about evenly
divided as to the necessity of having the terminal as an adjunct to the class.

A short-term visitor to Goddard from Centre National D'Etudes Spatiales
(CNES), Yves Leborgne described his learning procedure, which consisted of
studying pages 200-201 of the IBM System Journal (Vol. 3, Nos. 2 & 3, 1964), in
an article by Falkoff, Iverson, and Sussenguth. A brief list is given of the opera-
tions, functions, and relations with illustrative examples he worked in a very few
hours, reworked in less than one hour, repeated the third time in a few minutes,
and then began writing programs on his own.

Dr. Mansour Javid of the City University of New York and GSFC, was
the principal investigator of the 1966 Summer Workshops in the information
area. As such, he was charged with organizing the program of a group
graduates and facility members, and supervising their work, normally a full-
time job. He further occupied himself with carrying a personal investigation
into a computer programming problem which had been estimated to cost about
$25, 000 if performed by contract. He finished this job and wrote the report as
Goddard document X-200-67-639. That report does not explicitly acknowledge
the underlying reliance on APL, but Dr. Javid's account here makes it clear.

4
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The named report describes the Fortran programs appended hereto, and
the main sections occupy 50 pages.

More typically, a visitor can sit down at one of our IBM Type 1050
computer terminals which usually have an APL manual handy, and by reading
the instruction on how to "turn on, " can then follow the explanation of how
the language operates in order to work the examples in the manual. A few
hours of this allows anyone with a mathematical background the use of
the terminal for solving complex computational, logical, and manipulative
problems. Actually, a grade school student can learn to use the system in
the desk calculator mode in a few minutes. Undergraduate summer trainees
have accomplished significant achievements.

CONCLUSIONS

The results of these experiments in using APL have born out our ex-
pectations that APL is well suited for designing or describing the various
components of an information system: The data entering the system; the
special-purpose and general-purpose machines (computers) which process
the data; and the mathematical formulations and programs used to direct the
manipulations and computations performed on the data. Each of these func-
tions have been performed by several investigators and are well authenticated
and documented. This use of APL was the one which originally interested
us.

The experiences of many individuals at GSFC have indicated that
APL is a promising development in Computer language, which in the most
enthusiastic vein may replace many of the widely-used general-purpose com-
puter languages which are oriented to mathematical and logical problems,
e.g. , Fortran, Algol, and MAD. This is by no means unanimous, since the
least enthusiastic concede little usefulness to it, and when one group of 25 or
more were polled concerning its suitability to a number of applications, there
were wide divergences of opinion on all categories. The concensus, however,
remains favorable. As in all endeavors, there are a few individuals whose
enthusiasm is unbridled and their views must be discounted, as much those
of the few individuals who are antagonistic to most new ideas.

For APL to attain wide usage at GSFC, a large number of terminals
such as 03M 1050's or IBM 2741's must be distributed so that they can be
easily reached by anyone. Two to five terminals on each floor of each major
building would probably satisfy most general needs. Some heavy users might
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require exclusive use in their office; in some areas rooms containing
several terminals would be necessary. This number of terminals would re-
quire a computer the size of a System 360/50 which could support about 100
terminals, or approximately 1000 users. (Use of the Disc Operating Sys-
tems (DOS), an IBM executive program for medium-sized System/360
machines, will allow background work to be done simultaneously.) In the
near future, it is expected that a version of APL operating under Operating
System (0. S.), the large computer executive used at Goddard, will be avail-
able. This will make it possible to incorporate APL into our large computers.

There is presently a deficiency to APL as a computational aid: Most
input and output is by keyboard, which rules out operation on large data
bases with fast input. It appears that a mode whereby a program could be
compiled to be run in a batch process on some other machine would be de-
sirable.

Since APL operates nn a conversational mode, each statement is inter-
preted and debugged as it is written, and a large p.reentage at the inadvertent
programming errors can be eliminated while the program is being written.
This feature could have a major impact on conventional program writing,
since program debugging is presently using 20 to 30 percent of the time of
our big machines.

APL, being mathematical by nature, is easy for scientists and engineers
to learn to use, and as such allows them direct access to the power of a com-
puter without the professional programmer as a middle-man. This can be a
great benefit to the creative individual, since the delays of conventional program-
ming and computer "turn around" time can discourage and stultify the creative
process.

The use of APL as a design and specification language for system (both
hardware and software) provides a concise and precise means of communi-
cation between the various disciplines involved in designing and operating an
information system. These usages have been demonstrated at GS VC most
forcefully by Dr. E. P. Stabler, and D. H. Schaefer (see Appendix B), and these
descriptions have been used as the basis for building a working computer and its
software by W. Webb, and as a specification for a procurement request by
Schaefer. The long-term benefits of the use of APL in this context are hard
to assess, but experience with difficulties in the past lead us to believe they
will be profound; indeed, the Information Processing Division became convinced
of the necessity of a language like A PL before it was known that a machine im-
plementation existed. IPD still believes that this is a sufficient reason to pur-
sue the use of APL, even though this use alone would directly affect only a few
people and would not require extensive facilities.



Although many of the aims of our experimental use of APL have been
met, we can say that the current usage made of our facilities justifies their
continued existence. A considerable expansion could be justified on an oper-
ational need and in accordance to other reasons cited above. It is unlikely
that a demand for expansion will rise spontaneously, since many people who
would use facilities if they existed "don't know what they are missing," and
are unlikely to be enticed into trying them on the rather vague supposition
that if they find it useful, that the demand will be met by "someone" filling
it. Rather, our cautious but progressive exploration of the many initially
unknown factors have indicated that there is a potentially great benefit to
Goddard scientists, but that it has now reached a place where positive,
purposeful management must assess the situation and provide these facilities
in order that the benefits be attained. This involves a degree of risk which
our investigations have led us to believe are negligibly small.

Another factor over which GSFC does not have complete control (but
does have some influence) is the present reluctance of IBM to provide APL
to the public as "product line," There is an understandable reluctance on
the part of manufacturers to undertake the extensive support of yet another
computer language when their resources to deliver the software to which they
are already committed are fully occupied.

APL has developed over a period of several years as a research effort
and has only recently arrived at the stage where it is ready to be exploited
on a larger scale. This venture is being urged mostly by people who have
become aware of ALL from the description of the language in the literature,
through use of APL at the Watson Research Center where the development was
carried on, and at the few organizations at which experimental usage has been
tried.

A C KNOWLEDG NIENT

The editor acknowledges the assistance accorded by all of the individual
contributors to this report, since it is their experience which provides the
substance upon which all conclusions as to the value of APL and our experi-
ment stands: The International Business Machines Corporation through
the administration of Dr. K. E. Iverson and his staff at the Watson Research
Lab, Yorktown Heights, and several individuals in their Washington Office,
notably, Arthur Tonkinson, Mal Morton, Robert Fisk, and Dick Detmering,
who have supplied invaluable assistance in providing instructors, facilities,
and in the first few courses, a number of individual speakers who illustrated
their experience in APL.
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The most important contribution has been the initiation of the first few
stages of this experiment by Dr. E. P. Stabler, and the enthusiastic advice and
support of Dr. C. A. Wogrin, both consultants of the Information Processing
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Appendix A

THE USE OF APL IN AN ANTENNA DESIGN PROBLEM

Dr. M. Javid*

During the Goddard Summer Workshop of 1967, I was assigned the task of
writing a computer program for calculating the radiation pattern of a reflector
of arbitrarily defined shape, illuminated by a primary source with arbitrarily
defined characteristics and location. The geometry and source characteristics
were to be handled by subroutines, thus making it possible to use a main driving
program and different subroutines corresponding to the different geometries and
specifications. It was understood that a subroutine corresponding to a given
geometry would differ only in a few instructions from a subroutine for another
geometry, so that the engineers could easily make the modifications needed to ob-
tain the new subroutine from a previously used routine.

The required flexibility of program indicated a great detail of experimenta-
tion with different structures for the main program and the subroutines. Since
the writer is an amateur programmer, and at the time was only acquainted with
Fortran, it seemed that the task could not be completed during the period of the
Summer 'Workshop.

Fortunately, at this time classes were being held to acquaint the Goddard
staff with APL. After attending three one-hour periods of these classes, the
writer realized that, with the availability of AI ?L terminals, it would be possible
to experiment with various struc4-.:oes for the program, to test the programs, and
to amend them in a very short time. In fact, within two weeks after attending the
three hours of instruction, many combinations of main programs and subroutines
were tested. It was soon clear that the original structure conceived by the writer
would not have the required flexibility, and the final program had very little in
common with the original concept. However, the drastic changes, which would
have required many months of time (waiting for return of the results from a
batch operated computer center), consumed less than two weeks, pleasantly spent
at the APL terminal at the writer's convenience. The attached program was the
final version of the work clone in APL. It was then translated in Fortran and
greatly expanded to provide for input-output handling of data and results.

* City University of Now York, GSFC Summer Workshop Principal. Investigator.
See GSFC Document X- 200 -67 -639, same title, by M. Javid,
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The reader familiar with APL will not fail to observe that the program is
written by a novice who learned enough to do a job. This is one of the important
features of APL. It is.possible to learn enough to write a useful program without
having to know all there is in the language.

Even with the cursory acquaintance with the language, I could see its power,
and in particular, its advantages in dealing with arrays and matrices.

Whenever the Fortran program based on the APL model runs into trouble,
the debugging of the trouble was facilitated by running tests on the APL program.
This again resulted in a great saving in waiting time, minimizing the debugging
time needed at the batch-run computer.
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[122] 12I..I;;T+((A11x,',En)+,.;;Ixei:D)x
[122] -*R7
[12'J :C1W+-(STAxCI*Ix I XR )+(b*Tel)(LT Ix IYa)+CTA x 'MR
[125] C2'1?-(C'f x CFI xI Xin+ (CTAxCiUx I Y x I XI;
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[ 1 273 (7,71,- ( J:' ixC,"Tx )+ x CPIx II
C.128.1 CT.T.-(CT,IxClUxIX.1")+(r,",",xCirrxIII)-.:;7AxI,U

293 i.,1714-(-,L;PrxIi:I)+C1*IxIII
[ 1 3113 CRU*2)+CPT*2
[1 31] AY'2V--(CTR*2)+CTI*2
[132] 1,172V-4-( CP1;*2)+QPI*2
[ 1 33 J [ ; P ,7i ; I 1;34- (":;?; , CT.? , CFI? , A R2 V 7'21/ F2 V
[134j Ar2Y
I:1 353 -0P9
[136] P4:-*P16

V

70:31. [3]7
7 Y

[1] 1,S.14-TPIx(((R110+0.5x3)*2)-(17110-0.5x.9)*2):2x1,Tif
V

vitX/C0Jv
v 11XII+X lin Y

[1] 11XII +O
V

vIIXRCO3v
V 11XR.I-0-X 11XR Y

[1] UR/4-0
V

V11Y1C(.13V
7 IfY.11"-4-X 1IYI .Y

[1] 111.174-Zi?2xSKR
V

[1]
E2j
[33
[ 4]
[ 5 ]
[ 6]
[ 7]

VIIYR[MV
V 11YR.I4-X 11YR Y

R24-(X*2)+(Y*2)+7,*2
il1*.R72*0.5
ER1KxR1
SKR-SII1 KR
CKR4-COS KR
ZR24-Z+R2
11Y1U4--ZR2xCER

V

V112.IEGJv
V 117,II-4-X 1121

[1] IIZII-1--YR2xSY.R
V

VIIZI?[[]]V
V 1IZR.7:-4-X 112R Y

[1] YR24-Y=1?2
[ 2 ] *-Y112xCHR

V

VIIXZL[J]V
V Yi/XZ IIXZ

[ 1 3 R14.-( (:(*2)+( Y*2 )+Z*2)*(). 5
[ 2 ] VI1XZ4-X1 (l, -R1 )

V

l///YZ [My
v I)YZ Y

[1] R1-((x4,2)+(i*2)+7,4,2)43.5
C23 VilY7.4-Y:-(7,-R1)

V
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Appendix B

APL SIMULATION OF THE STATISTICS COMPUTER
ABOARD EXPLORER XXXIV

David H. Schaefer*

INTRODUCTION

Simulation of a computer by a computer can be most advantageous. An
APL simulation of the special purpose computer known as the "statistics com-
puter," aboard the earth satellite Explorer XXXIV, has proved valuable in
at least three respects. First, it has provided a tool for troubleshooting the
processor in the laboratory. For a given input, a description of the output and
the state of various registers and counters is immediately available to be com-
pared with these states in the device under test. Second, the APL description
of the device has provided a unique form of documentation of exactly what the
device is, that is, that it has provided a ready method of telling others exactly
what the inputoutput characteristics of the device are. Third, the APL simu-
lation of the device has provided an easy method of determining if specific
given inputs can produce specific outputs that have been received from the
orbiting spacecraft.

DESCRIPTION OF ON BOARD COMPUTER

The plasma experiment on the Explorer XXXIV satellite provided fertile
ground for onboard data processing. In this experiment, a large amount of
data is being produced by the sensing element, too much data to be completely
transmitted over the available telemetry. In order to fit the experiment's data
into the telemetry system, a parameter extraction technique was evolved where
parameters related to mean, variance, and mode are computed aboard the
satellite.

The purpose of the ,statistics computer is to efficiently represent the
prime characteristics of data collected by the plasma detector during a full
rotation about its axis of the spin stabilized spacecraft. Figure B1 shows the
type of output expected from the plasma detector `he interplanetary space, and
in the region of space between the magnetosphere: solar shock wave.

* GSFC Flight Data Systems Branch
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In interplanetary space all plasma is expected to arrive from the direction of
the sun, while in the transition region the plasma is expected to be homogen-
eously distributed. Questions of special interest are "Where is the boundary
between the two regions?" and "How does the shape of an azimuthal angle
versus counting rate curve change as the boundary is traversed ?" In addition
there are the usual questions of: "How much flux is present?" and "Where in
each revolution was the counting rate the greatest?"

The process used to provide this information using a minimum number of
bits is to calculate statistical quantities. Each revolution of the spacecraft about
its spin axis is divided into 16 parts, each covering 22.5 degrees of the revolution.
Defining C as a 16-element vector where C[IJ.is the number of pulses produced
by the sensor in the ith sixteenth of the revolution, .we can define a ratio r
by the function RA, such that

V R+RA. C
[1] R4-((+ / (C*2))x16)+((+/C)*2)

V

This quantity can only assume values between one and sixteen. If r has a value
of 16, then all inputs arrived in one-sixteenth of the revolution, and the input
curve is close to the interplanetary space input of Figure B1.

On the other hand, if r is 1, equal inputs arrived during every sixteenth
of the revolution such as the transition region curve of Figure B1. Ratios in
between 1 and 16 are indicative of various well-defined in-between cases. On
board the satellite only a rough approximation to r is calculated. To obtain
this rough value, the difficult operations of multiplication and division are not
performed. Instead, the sum-of-squares calculation is accomplished by a
counting method. Four bits of this calculation are telemetered, these bits
being determined by the logarithmic representation of the total number of counts
received in the revolution. The logarithmic counter representation itself is
also telemetered. Figure B2 shows this in block diagram form. From these
quantities more refined values of r can be obtained on the ground.

It is possible to receive 219 counts in any sixteenth of a rotation. To
directly transmit the number of counts received in each sixteenth of a rotation
over a complete rotation of the rotation of the spacecraft would therefore require
16 x 19 or 304 bits. By doing the process described here, a description
of the information collected during a complete rotation of the spacecraft is
represented by 16 bits, a bit saving of a factor of 19 over direct transmission
of the data.

17



INPUT

COUNTS

1.,'Ci2 COUNTER
(SUM OF SQUARES)

COMMUTATOR

A A

1 2 3H

2

3

4

5

EC; - LOGARITHMIC
COUNTER (AREA)

SUM OF
SQUARES
OUTPUT

AREA
OUTPUT

TO
TELE-

METRY

Figure B2 Block diagram of processor.

Figure B3 shows a segment of the output of a computer program that re-
lates the output of the IMP flight hardware to the input data which produced the
specified output. For example, if the logarithmic representation of the total
number of pulses detected by the sensor (the A bits) is 195, the total number
of counts actually detected lie between 38,912 and 40,959 counts. If, further-
more, the four transmitted bits of the squarer counter (the S bits) have, for
instance, the value 5, the ratio of the input histogram must be between 6.39
and 8.52. From this it can be calculated that the largest bar of this input
histogram is between 17,048 and 29, 754 counts. For each of these quantities
the harmonic mean (H. M.) of the range and the maximum ± percentage error
(P.E.) are also listed.

In addition to the above mentioned computations, the statistics computer
also provides an indication of which sixteenth of the revolution the number of
receive1 pulses was greatest. A detailed description of the computer can be
found in the bibliography for this Appendix.

APL SIMULATION

Referring to Figure B2, the three blocks shown have been individually
simulated on the APL system and then combined to produce the action of the
on-board computer as a whole.

18
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The logarithmic counter conversion of the number N is the following:

L-CL N
[1] MN4-(190 2 )-i-N
[2] Z4-(MA/11. )116
[ 3] )(-(142)T(16-Z)
[14] ./4-Zi.15
[5] L4-K,AINE ( c7+1),( J +2) ,(J+3) ( Jo; )

In practice N is +/C where C is the 16 component input vector.

The output (line 5) represents the binary data on lines 5 to 12 on the
right side of Figure B2.

The squaring counter is a combination of two counters, values of one
counter being transferred to another counter. Also involved is a prescaler
of five stages. The following function takes into account all complications
of prescaling, transfer pulses that follow an input pulse by 16 counts, and the
fact that the commutator of Figure B2 will sense a !tone" if it tries to com
mutate an open circuit. For an input C, the 27 actual lines (rather than 38
shown in Figure B2) coining from the sum-ofsquares counter have impressed
on them the binary number represented by the first part of the vector S
in the following function:

VSQ[0] V
V S-SQ C

Cl] SW4-l((SC C)+32)
[2] A7-t15

3] TP4SWE 17 ,SPIEN+1 7 -SW[N]
[4] Cl/4(321( SC C))16

5] /4-TP-(0, CVC t15]
[6] S4-((27p2 )T(+/(/x(/+1))÷ 2)), 1 1 1[7] -0

V

The prime element of the commutator of Figure B2 is a shift register
containing only a single "one." This "one" is shifted by the logarithmic counter.
For the input vector C, the position of the "one" (the LAtch position) is

19
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VLACM7
V B+LA C

[1] B +(1 +21((8a5) /(CI. + /C)))f6
V

where the initial position is assigned the value six.

The value of the four commutated bits of the squaring counter (the
"S Bits," lines 1, 2, 3, and 4 on right hand side of Figure B2) are a function
of the logarithmic counter (via the function LA) and the squarer (via the
function SQ). These bits are defined as

V G+SB C
] 134-LA C

[ 2] S+SQ C
[3] G+.51(3 3-B),(34 -E),(35-B),(36-B)]

In addition to the boxes shown in Figure B2, the statistics computer
also has circuitry to determine, and provide for telemetry, the location of
the sixteenth of a revolution in which the largest number of counts were
received. Taking into account several complicating factors including five
stage prescaling, the value given as the sector of maximum input counts
for the input vector C is given by the function

A+MAX C
SV+1.((( SC C)+16 ) 432)
N4-115
DV+SV[1 ] ,SVIN4-1 -SV[N]
A4-161(1/(M/DV)=M0/116))

The function SC above is the sum scan function that has not at the
time of writing been implemented on the APL system. The following
function for sum scan has, therefore, been derived for vectors of dimension
16:



V SS4-SC C
CS+C[1].+/C[1 2]

[2] N+3
[33 CS4-CS,+/(CS[P-1],C[N])
[4] 11.14-N+1

[5] -(Pix17)x3)+((N=17)x6)
[6] SS4-CS

V

The actual telemetry format for data collected during one revolution
of the satellite consists of four sixteen-level pulse-frequency modulation
bursts. The hexadecimal representation of this (the form of "quick look"
data from the satellite) is given by the TELemetry function:

V C

[1] Pi-(21((8c(4)/(CL+ / C))) ,(21((8w4) / (CL+/C))),(21SB C),IIAX C
V

All the foregoing specify the computer and its telemetered outputs.

A simple function useful in helping to reduce received data is the LG
function. This function reduces the first two components of the telemetry
vector to the approximate number of input counts. Its definition is

V Y

[1] -(Y[1]>1)x2)+((Y[1]51))(4)
[2] /11-1(1,((4p2)TY[2]),1,((Y[1]-2)(30))
[3] --*0

[4] Ai-1611
V

Examples of the use of the TEL and LG functions follow. In the first
three examples vector H has the ratio 16, vector E has the ratio 8, and
the vector (16 p 2440) has the ratio 1. Figure B3 can be used in checking the
answers for these three examples:
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H
0 0 0 0 0 39040 0 0 0 0 0 0 0 0 0 0

T,EL H
12 3 11 6
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39936

0 0 0 0 0 19500 19500 0 0 0 0 0 0 0 0 0
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1 2 300 400 500 600 70 800 90000 10 20000 12 13 14 15 16
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Appendix C

SOME APPLICATIONS OF A PROGRAMMING LANGUAGE

Isobella Cole and E. Steinberger*

SUMMARY

APL is a programming language specifically designed for applied
mathematics. It differs from other programming languages in that it is more
concise, precise, and economical of symbols. In this paper is shown the
APL language as applied to some commonly used transcendental functions.
Several improvements of APL are required for such things as program struc-
turing, access to data, presentation of data (i.e. , input/output operations), and
data operations. However, it is felt that this paper gives some indication of
the usefulness of APL if one approaches it openmindedly.

APL is used for such applications as:

1. Trigonometric functions and solution of Kepler's equation

2. Harmonic analysis

3. Matrix operations

The areas of application are chosen primarily for their intrinsic
interest to the Mission Trajectory Determination Branch and to indicate the
usefulness of the language for Mission Trajectory Determination applications.

TRIGONOMETRIC FUNCTIONS

The APL language for computing the arc cosine, arc sine, arc tangent
(principal values), arc tangent (quadrant oriented), sine, and cosine is
presented.

* GSFC Programming Systems Branch, M. & T. A.D.
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Appendix D

UNIFIED INFORMATION PROCESSING TELEMETRY SYSTEM

C. J. Creveling*

Dr. Robert H. Goddard said, "It is difficult to say what,is impossible,
for the dreams of yesterday are the hope of today and the reality of tomorrow. "
The system to be described in this paper shows potentialities for approaching
the "dream system" discussed by Cliff in a preceding paper of this symposium
more closely than might have been suspected possible just a short time
ago. Let us first examine a few statistics. There were 18 satellite
launches in 1966 and more than 60 are planned between now and 1970, in-
cluding backups. Second, it should be noted that one of the earliest satel-
lites, the Vanguard, weighed something on the order of 10 pounds while the
OGO satellite weighs over 1,000 pounds. There is a spread of two orders of
magnitude. Third, bit rates of the earliest Goddard satellites (and even
some of the present ones) run as low as 20 bits per second and as high as
128,000 bits per second, or four orders of magnitude higher. The error rate
for the sample taken by these satellites at the design goals initially specified
runs from 10-2 to 10'5, or six orders of magnitude. It is important that
some of these facts be kept in mind when adaptive systems are discussed,
because no present system can cope with these ranges of variation.

A unified information processing telemetry system will consist, basic-
ally, of a programmable computer onboard the spacecraft and an adaptive
telemeter in which coding, power, bit rate, and format are controlled. It
will include a programmable ground system which will have at least a capa-
bility of "talking back" to the satellite. The writer believes the term
"adaptive telemetry" has its widest meaning in this sense. A multidisci-
plinary approach must be considered in order to achieve any solutions to
the problems which cover such a gamut. One cannot take the position of a
telemetry engineer who considers his system as a common carrier and deals
with its inputs and outputs according to some specification.

Figure Dl depicts 1.4 system for a simple laboratory experiment that
requires only one system engineer the experimenter. Figure D2 shows

* Goddard Space Flight Center. This is paper No. 9 presented in "Major
Space Projects at Goddard, " an internal GSFC document (Official Use
Only), Jan. 1967.
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SENSOR INSTRUMENTATION. DISPLAY

SENSOR TELEMETER INSTRUMENTATION DISPLAY

TX RX AMPLIFIER
L.

SYSTEM ENGINEER EXPERIMENTER

SYSTEM ENGINEER: EXPERIMENTER SUB SYSTEM ENT, TELEME IRV INSTRUMENTATION

Figure Dl An experiment in the Figure D2 An experiment on the
laboratory. range.

what happens when the output of a sensor is telemetered from some distance
away because of safety considerations or the impossibility of having the ex-
perimenter present. Here a second man comes into the picture the sub-
system engineer.

Figure D3 shows an increasing order of system complexity that requires
that an increasing number of people become involved in the design. Now the
problem can be viewed as a whole and information systems can be discussed.
Although data handling inside the subsystems is of concern, the meaning of
the data as it passes through the system as a whole is of equal concern. This
best illustrates what the term "information" means when an information system
is discussed. The overall system has a number of subsystems and it would be
very difficult to present in detail adequate specifications of the inputs, outputs,
and interfaces between subsystems. Until each subsystem engineer concerns
himself with the subsystems which adjoin his, and indeed with the whole satel-
lite plan, adequate control will be lacking. For example, consider an experi-
menter looking at the pulsed output of a sensor in a simple experiment.
Initially, the experimenter would like to see not only the pulse but the wiggles
on the pulse to establish in his mind the integrity of the instrumentation. Only
after he has been convinced that his experiment is indeed working properly is
he interested in the pulse value. If the system gives him this value and nothing
else, he will still question the integrity of the experiment. If the experimenter
is asked what he would like to have in a telemetry system, he might say,
"Give me 5 megacycles!" It is believed that it is possible, with the use of
onboard processing and an adaptive system, to satisfy both of these requirements
in the sense that they can be controlled from the ground. To do this an initial
learning period is provided in which any or all of the experiments can be
sampled successively at very high rates in order to establish confidence in
the system, and then only the desired information is transmitted.
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Figure D3 Subsystems used in coupled experiment.

it great deal has been said about the problems or using coding as a
technique in various communications systems. Many of these codes, how-
ever, have been generated to satisfy specific problems, but our concern
here is with the error rates covering six orders of magnitude. It is very
difficult to imagine any single set of codes that would satisfy the require-
ments over this range; however, once there is a computer on board the
spacecraft and we have the means for controlling it, the computer becomes
a very useful adjunct to coding the telemetry link. Therefore, the computer
belongs as much to telemetry engineer as it does to the onboard processing
system.

A system is being proposed by the GSFC information Processing Divi-
sion over which they have to exercise a measure of unified control in its
design. Unified control. means that all of the subsystems will be under a
single administration, which will provide a fairly close control over both the
administrative and technical problems involved in developing all the various
subsystems, from the spacecraft to the ground support. However, when it is
necessary to become involved in an interdisciplinary approach, a semantic
problem immediately arises between people who at times use the same terms
with different. meanings, or who use unfamiliar terms. It is difficult, for
example, for a person who is not used to working with computers to understand
what goes on inside the computer. A thorough understanding of a computer
program can be obtained neither by looking at the punch cards nor by looking
at the sequence of the machine instruction codes. In fact, it is doubtful that
a complete understanding can be obtained by reading the program in some
language such as Fortran. To get this understanding, not only must the
program be expressed in some relatively higher order language, but also an
English description of it and a flow diagram are necessary. A number of so-
called h.gilor order languages have been developed for computer programmers
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in place of, or to supplement, flow charts and the English descriptions
which can describe very complicated systems very precisely. For example,
the logic structure of the IBM system 360 has been completely specified in a
higher order language in approximately a dozen pages. The programming that
takes place on the IMP-F satellite, which is a relatively small system, was
described by Dr. E. P. Stabler* in this higher order language in a few sen-
tences.

It is presently proposed to study and use such a higher order language
for several reasons. First, it is most convenient for conveying information
from one subsystem designer to another in a complete and unmistakeable manner.
Second, this language lends itself to the writing of the actual programs which
will be used in the computer on board the satellite and in the computers on the
ground (although they are different types). Third, this language becomes a
design tool of the onboard computer because it is possible to write the Boolean
expressions for the functions expressed in higher order language (in fact,
this has already been started). From these expressions the logic diagrams
can be made through a relatively straightforward process.

It is not clear just how useful this language will be to people outside the
information system. It would be naive to think that, because this wonderful
thing has been developed and discovered, everybody will say, "Teach it to
me." What system engineers have to do first is use it for their own benefit.
However, these languages have been in vogue and widely distributed now for
several years and are finding some use by programmers in general. More-
over, almost all satellite experimenters have been forced to become computer
oriented. This provokes the increasing use of these languages as a natural
trend.

The kind of machine that is being proposed here for spacecraft computers
follows work that was done at GSFC last summer by Dr. E. P. Stabler. At
that time, it was undertaken to design a stored program computer that would
perform the same functions as one of the IMP spacecraft processors. It was
concluded that such a computer be designed with approximately the same size,
weight, and power consumption, but it would be busy less than 10 percent of
the time. Therefore, it should be possible to build a computer for small satel-
lites that would have a considerable amount of time left for such things as
coding the telemetry link, changing the format of the data passing through the

* Associate Professor of Electrical Engineering, Syracuse University.
Such a higher order language now exists and is termed APL.
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system, and possibly processing some of the information before it goes into
the telemetry link. If there is a computer on board the satellite, a computer
on the ground, and a command system, a "dream system" starts to take
shape a dream system in which a spacecraft ultimately might be considered
a piece of peripheral gear used in conjunction with a large ground-based
computing system. This spacecraft computer would then perform experiment
conditioning, multiplex processing, and coding for the telemetry link. In
addition, the modularity in design necessary to overcome problems in relia-
bility would enable the configuration to be changed from one mission to
another.

Figure D4 shows in a very simple manner a microprogrammed machine
and a stored program computer. These differ as shown in Table Dl. The con-
ventional computer is characterized by fixed input format and fixed word
length. On the other hand, in the microprogrammed machine, variable word
length can be provided very inexpensively. The conventional computer has
a fixed logic structure, a stored program, and a fixed., nstruction repertoire
that can be set up on the ground. The microprogrammed computer differs
in this respect in that the microprograms, as well as the macroprograms,
are stored and changeable. In the conventional computer, flexibility is pro-
vided by software, and capability for simultaneous operations is limited. In
general_ large stored program memory or else a very --;+: sive list of

-
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MICRO PROGRAMMED
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MEMORY [ MEMORY i
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Figure D4 Computer configuration
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Table Dl Computer Characteristics

Conventional Computer Microprogrammed Computer

Fixed input format; fixed word length Variable input format
Fixed logic structure; stored program

and fixed instruction repertoir
masking for bit manipulation

Flexible internal structure

Large stored program memory Small stored program
Low speed (many instructions per

macro)
High speed

Flexibility provided by software

Limited simultaneity

instructions is required; it is also low-speed in the sense that many machine
instructions have to be carried out for each microprogram or so-called
macroinstruction. The microprogrammed computer, however, circumvents
many of these limitations by being, in effect, almost any machine that you want
it to be, and its instructions, in effect, rewire the machine for the problem at
hand. The number of instructions to be stored in order to do this is surpris-
ingly modest and the speed is very good.

Development of this system is now progressing in a series of steps. The
study phase is in process and a design phase has been started in which the
tentative logic designs are being carried out. A breadboard is planned for
testing the actual onboard subsystem. It is not necessary to build a computer
on the ground because there are a variety of these available and they can be
programmed according to higher order language. In order to see how this
system will operate as a whole, a computer simulation of the whole system has
been planned. This is not going to be an easy job, but it can be accomplished in
parallel with the development and later on it will be invaluable in reconfiguring
the system according to what is learned from the simulation. Having a flexible
onboard computer permits the feedback of both simulation results and early
experiences with the system. This will be followed by the development of a
prototype and a flight model in the future.

SUPPLEMENT QUESTION AND ANSWER SESSION

UNIDENTIFIED QUESTIONER: I have two things, one is in the nature of
a comment. Although the computer is a very useful tool, I think you have to be
careful not to use it for things that it is not emrninently suited for. For instance,
you mentioned perhaps doing a channel coding in the computer, which in certain
instances could be a good ide.a and certainly provides lots of flexibility.
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However, I think this is one thing that is quite efficiently done by fairly
elegant hard-wired devices which have been developed such as the PN system.
To go another step further, if you are counting data pulses from an experi-
ment-interrupt computer and have to add "one" to a register, you could in-
clude special accumulators to do this and then transfer the results entirely.
You have to be somewhat careful what jobs you do assign to a computer.

The other thing I have is a question about the microprogrammed machine.
Do you have any feeling for the difference in complexity between the standard
configuration and microprogrammed configuration, especially considering this
is a box-labeled switching matrix and may grow to fairly considerable propor-
tion?

MR. CREVELING: I think your remarks are certainly well taken and
reflect my feeling on the subject of the software approach versus the hard-
ware approach to specific problems within the spacecraft, such as coding the
telemetry link. I mentioned the fact that the computer is available and that
the computer is a very flexible device so that as you change from mission to
mission, or if you change from very close ranges to very distant ranges as in
some of our eccentric satellites, you have the ability then to change your type
of coding. It is certainly true that if you have a fixed coding scheme you
could build up hardware devices to do this very efficiently and very quickly.
In such cases, we have generally followed the practice of investigating both
approaches, trying it both ways (at least in the study phase) to decide which is
the better, and making the choice on that basis, taking into account the fact
that sometimes expediency calls your hand. I feel that the reason that the
computer has advantages for doing this is not because of greater efficiency but
bccause of the flexibility of the approach.

Regarding your question as to the difference between the microprogrammed
machine and the more conventional machine, we plan to try both of those, and
compare them. At the moment, I could not give you a comparison because we
have not gotten that far in our study, but I think that the microprogram machine
will compare favorably with the conventional approach.

MR. HABIB: In your discussion here a thought occurred to me. I wonder
whether we did not miss the point (semantics again) dealing with the word "com-
puter" when we are really talking about general-purpose data or signal-handling
system. You began your talk by talking about unified information systems and
the designer needed in a sense a control over all of the elements in it. Then
we very suddenly get down to a specific thing and call it a computer and I think
what flashes into everybody's mind is the type of computer that sits in our
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floors out here. I think you both were correct that you will use unique equip-
ment words where needed and use general-purpose words where needed and
so long as you are allowed to design the entire system, then you will achieve
your goals.

MR. CREVELING: No argument.

DR. POSNER: If you were to use your computer to encode the telemetry,
I envision that a computer failure in the central computer clock would cut off
all information as to what happened, and, in fact, by having all experiments
channeled through one machine you may find out that it becomes a no-go in-
stead of an OGO spacecraft. In this case you may be very unhappy at having
everything channeled through one point. We at JPL feel that decentralization
will protect a mission. Now our missions may be more expensive and you
may have to count on getting some use out of them. On a, cheaper mission it
may be that the reliability is not as important. These are sort of political
decisions but in the very expensive heavily equipped spacecraft for soft landing
on Mars you have to count on getting some experiments back no matter what
fails. So, in a really expensive mission where you have everything staked on
it, I would hesitate to think of channeling everything through one computer.
On, a smaller interplanetary spacecraft where you have dozens of them in the
warehouse, you may find it more economical to use the central computer.
Incidentally, a possible use for a computer once you have it is to decode the
commands from the ground. You may want to have very highly encoded com-
mands to avoid having a miscommand decoded by the spacecraft which might
"wipe out" the mission. If you do have a general purpose computer, that
would be a really good use for it. Perhaps using a computer to decode space-
craft commands may be a better thing to do than use it to encode telemetry.

MR. CREVELING: That is one of those bad little nightmares that
sometimes interrupts our dream system, and we have thought of it. If you
will notice in Mr. Purcell's diagram, he shows a switch by which his airborne
computing system could, in effect, bypass the data from the commutator
(which presumably would remain unimpaired) and would continue to send some
kind of data down to the ground. There is another approach, several varieties
of approach, to this reliability problem. They generally involve the use of
some kind of equipment redundancy. One form which has been used in a large-
scale computer is the one in which you have a number of memory cells and a
number of computing units, and these two are connected by a matrix. If one
or more of these fails, you limp along with something less than the capability
of the original system. Since it is programmed, you now reprogram to handle
less information. I hope that we can use some such technique to remove the
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the fears that you talk about, and, as to your suggestion on using the computer
to decode, it is a very good idea.
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Appendix E

AN APL LEAST SQUARES PROGRAM

W. P. Altman*

Prior to my arrival at Goddard as a cooperative student from Drexel
Institute of Technology in Philadelphia, I had very little contact with com-
puter systems. The previous experience I had, was a course in numerical
methods using computers as an aid and having a part-time job in the school's
Chemical Engineering Department to reduce sets of given data points to a
line of least squares. Even with this experience, I was only using an IBM
1620, a computer with limited memory space and allowable grades of Fortran
available. Upon becoming settled in my branch, the Applications Experiment
Branch of the Systems Division, I saw a fellow worker sitting before what
appeared to be a typewriter with computer printout paper issuing from the
back. After I asked what specifically it was, he explained it was a input-out-
put device for the IBM 360/50 computer in Yorktown Heights, New York.

The language used on this computer system was markedly different from
Fortran II, the language I was familiar with. Of course, it was APL. After
finding out I was too late in signing up for an in-house course, I decided to
try to learn the language by myself. I picked up the manual that was supplied
with the terminal and sitting down at the terminal, proceeded to become famil-
iar with the system. For a half hour every day I would sign on and experiment
with what I had read. Then I would read some more and sign on again and so
forth. However, due to the loss of the system because of lack of funds, I have
not used the system extensively. Therefore my experiences have been very
limited since I have used the APL terminal for only three months. My experi-
ence may therefore be of some insight to the beginning user of APL.

One day while using the APL terminal, a fellow employee came into the
room and asked what I was doing. He had no previous experience with com-
puters and had no inkling of what a computer could do. He was working on the
WE FAX (Weather Facsimile) System, running a statistical test of points trying
to evaluate the line of least squares that would fit these points. He asked me to
program the APL system to evaluate the coefficients for the line of least
squares.

* Drexel Institute of Technology, and GSFC,.
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Consider a number of points on an XY-coordinate plane. The problem is
to develop an equation of a curve that fits these points the "best. " "Best" in
terms of the least squares criterion means that the sume of the squares of the
differences of the data points (yt) and points on the calculated curve (ye) are a
minimum. The degree of the equation cannot be greater than the number of
data points. An nth degree equation (considering one dependent variable) is
of the form

f(x) = yc = a0 + a iX a2X2 aXn (El)

One must evaluate the a coefficients. This is done by taking the partialo 1 ,
derivatives of function d(ao,i,.

n
n)

m

- aa - a - a 2X2 - anXn) 2C100,1.. ..n)
1.1

(E 2)

with respect to the ao, coefficients, setting these derivatives equal to
zero, and solving the resultant equations simultaneously. The result is

a0N + a 12.x + a
2

>.
x

2 . . + a 2.: x" =

a + a + a
2

2
x30

2
x 1->. x

2 1 anY-x" +1 2-- ZxYt

(E 3)

2 n 2 o+i 2 n+2 . . z 2n = n- 1

0 X 1 x 2 x n x x

All summations are from 1 to in. Notice that the above equations can be repre-
sented by the matrix product (Reference 1):

XA = Y, (E4)
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where

X1J .. =

Y k

k.1

i+j-2
k

1 5 i n

1 5 j n + 1,

ai.,t. at_1, 1 5,t n + 1.

The coefficient matrix A can be found by taking the inverse of X and
premultiplying Y. Symbolically

A= X-1 XA = X-1 Y.

(E 5)

(E 6)

Trying to make the APL program simple and yet general, I came up with
the listing in Figure El. I designed the program such that I could instruct the
fellow I was working for to sign on by himself, load my workspace, enter the
data and the degree of the equation required, and call the function "least. "
This is one of the most important advantages of the APL system that anyone
can sign on and use the system, even someone who has never had a programming
course.

As luck would have it, the program was not used extensively. (The need
for the program had vanished.) However, the program, when it was used, took
a great deal of computer (CPU) time, or the computer was loaded down with
other assignments. The reason I say this was that for the evaluation of a fifth
degree equation from ten data points, the computer required 36 seconds termi-
nal time. How much of this was CPU time is unknown. The program could
have been improved by adding a series of statements to evaluate the function
d(ao n) (equation E 2) for the prescribed degree function and compare thisn
value for other degree equations.

REFERENCE

1. Southwarth, Raymond W. , and Deleeuw, Samual L. , Digital Computation and
Numerical Methods, McGraw-Hill Book Company, 1965, pp. 472-473.
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DATA 0 1,0 2,0 0,0 1.0 2,0
1 .7.,T-7..1rT PATA

COEFFICI F. f.":17 ASC'EPDINC 0E17E1? APE

0,3f1:78 97,7-1C
1.000000000E0

V rOFF-4-DEC LEA ST DATA
[11 42+2x ((N+0,5x DATA)>DPO )
121 'PF:GREF I,r, T,A ROFR THAN PUMPER OF POINTS TO Pr FITTED'
[3] 40
f 4] I4-( , (11A4-DP +1 ))p ,0
[ 5] XY.+( NA , )0 ,0
r. 63 0'4-0

[7] 4.8+7 x ( (,r4.,r4.1 )>PA)
[ I -0
1: 97 4104-3x((74-i+1 )>i./A)
[ 1.0] 1.74-1"-+J -2
[11] AC I ;.1].+A[I.,,r1++ / ((X4-0A TA IND*EX )
[17] 49
[13] yyrer ;114-xyrir ; J++1((XE fil*(J-1))x ( Y4-DATAC ( )+In)C Ali)
[14] 47
[15] COEF-4-( INV A )+ x X Y
[16] 'COEFFICIENTS It; ASCENDING ORDEP APE'

V

I LEA ST 0 1 2 0 1 2

COEFFICIENTS IP ASCENDING ORDER ARE

8.A817841 97E-1F,
1.000,000000E0

V COP F-4- DEG LEA ST DATA
CA 7 42+2x( ( p PA TA )5EPG
[ 'DEGREE IS LARGER THAN ?'UPPER OF 7'01-NTS TO PF FITTED'
[3] 4.0

[4] A4-( PIA ,(11A4-0EG+1 )), 90

C 5 ] XY4-( ,i)p,o
C 6] cr4-0

[71 4E+7'4 ( (I.T4-,1+1)). i7A)
8 /40

[ q ] 41 0 + 3 x ( ( /4-.I+ 1 ) >"7 )
[10] 'Y' -.T+J - 2
[11] Air ;.71+AEI:L71++ / ((X.PAT/' C I.P1)*Ky)
[12]
[1.3] X.Yie7;134-.):Yier;11++/((Zi,tr3*(J-1))x(Y4-PAT/Ir(1/.')+//])[0])
[141 4.7

[ -15] GORE+ ( INV A )+ x X Y
[16] ' COEFFICIENTS .77.' ASCENDING ORDEI? RE'

V

5 T,E A ST 0,1,2,3,11,5,E,0,3,7,9,13,1P,45
T.EAST ,7,7,9,13,18,45

COEFFICIENT :7 ArCENDTPC CPDET? APP

0.C,4P.70 1 2n.R76
1 .7931 R1 P7
0.1047777294

_1,092803031
0.42;1 3 626.3R

0, 045R3 33333

Figure El
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Appendix F

HOW TO FIND PATH LOSS AND SIGNAL/NOISE RATIO
USING THE APL TERMINAL

Martin Sachs*

HOW TO FIND PATH LOSS USING THE APL TERMINAL

To compute path loss, or to check for verification of an already known
path loss, one may do the following on the terminal:

)COPY 1125 DONNA PATNLOSS
)COPY 1125 DONNA LOG

)COPY 1125 DONNA V

To execute this function, type the single word PATHLOSS. The terminal
will reply with the following:

V?)(MAMHZ:
The two variables can then be inserted. The first variable is distance in

kilometers (km) and the second is the frequency in megahertz (MHz). A space
should be left between the two desired variables. The computer will then type
out the answer specified in decibels (db).

For example:

)COPY 1 125 DONNA PATHLOSS
)COPY 1 125 DONNA LOG
)COPY 1 125 DONNA V

PATNLOSS
VUMAMHZ:

2E5 136
181.191 3781

* Goddard Space Flight Center.
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HOW TO FIND SIGNAL/NOISE RATIO

To compute the signal-to-noise ratio,

'COPY 1125 DONNA SNRATIO
)COPY 1125 DONNA LOG
)COPY 1125 DONNA X

from the computer. To execute this function, type out the word SNRATIO. The
machine will reply with the following:

X ?DBMADX ARPS
ENTER VALURS SEPARATED AZ COMMAS, AS SHOWN:
WR (DBM), TN (DEG.K), BR (BITS/SEC)

0:

The three variables can then be inserted. The first is WR in dbm (deci-
bels with respect to one milliwatt), the second is temperature (TN) in degrees
Kelvin, and the third is bit rate (BR) in bits per second. The answer will then
be typed out in decibels (db).

For example:

)COPY 1125 DONNA SNRATIO
)COPY 1125 DONNA LOG
)COPY 1125 DONNA X

SNRATIO
X?DBMADXARPS

ENTER VALURS SEPARATED Ai COMMAS, AS SHOWN:
WR (DBM), TN (DEG.X), BR (BITS/SEC.)

0:
435.9,985,100

12.76517921

Figure Fl is a sample printout.



)COPY DONNA PATHLO:$

)COPY DONNA SNRATIO

V PATHLOSS [0] V
V PLS +PATHLOSS;F;R

[1] 'V?KMAMHZ'
[2] I/4-0

[3] F4-11[1]

[4] R4-V[2]
[5] 32.5+(20x(10 LOG F))+20x(10 LOG R)

V

V SNRATIO [0] V
V SNRATIO;K;WR;TN;DBM;DX;BPS;BR;SNR

[1] ' X ?DBMtDKtBPS'
[2] ' ENTER VALUES SEPARATED BY COMMAS, AS SHOWN:'
[3] ' WR (DBM) , TN (DEG. K) , BR (BITS/SEC.)'
[4] X4-0

[5] WR÷X[1]
[6] TN÷X[2]
[7] BR+X[3]
[8] K4-1.38053E-23
[9] 10x(10 LOG(10*((WR410)-3))4KxTNxBR)

V

Figure Fl



Appendix G

UNIVAC 1108 UTILITY CONVERSION ROUTINES

Christopher Daly*

During the summer of 1966, my main duties were as a Univac 1108 com-
puter programmer. I was also introduced t o APL and had easy access to a
nearby terminal. I solved several small analytical problems using APL 'and
wrote a few game-playing routines for my own amusement and m gain pro-
ficiency in the language. But perhaps the most generally useful routines were
those I wrote in connection with programming the Univac 1108.

A Univac 1108 computer word consists of 36 bits. It is customary, when
obtaining memory dumps, to format each word as 12 octal digits. The pro-
grammer then has the job of interpreting these 12 octal digits as an instruction,
a number, or a s ring of characters. I wrote four short APL functions to aid
the programmer in this interpretation:

DECMAL converts a 12-digit octal number into its decimal equivalent.
The Univac 1108 uses one's complement notation for negative quantities;
this program interprets such quantities correctly.

FLOAT interprets a 12-digit octal number according to the Univac 1108
floating point word format. This format consists of one sign bit, an 8-bit
biased characteristic, and a 27-bit mantissa.

DEFLOAT interprets a pair of 12 digit octal numbers according to the
Univac 1108 double-precision floating point word format. This format con-
sists of one sign bit, an 11-bit biased characteristic, and a 60-bit mantissa.
Although the Univac double-precision format, with its 11-bit biased charac-
teristic, allows representation of numbers between E-308 and E+308, this
function will result in a DOMAIN ERROR if interpretation of a number outside
the range of E-75 to E+75 is attempted (the smallest and largest numbers that
APL can represent. )

FIELDA TA converts a string of 12-digit octal numbers into their Univac
fieldata equivalent. The result is as though the words were printed directly on
the Univac printer.

* Goddard Space Flight Center
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I wrote two other APL functions, primarily to assure myself that
DECMAL and FLOAT were working correctly, but they are useful in their
own right.

OCTAL converts a decimal integer into its 12-digit octal equivalent, as
it would appear in a memory dump. It is the inverse functionto DECMAL.

FLOCTAL converts a decimal number into its 12-digit octal equivalent
in Univac floating point format. For normalized numbers it is the inverse of
FLOAT. The composition, FLOCTAL FLOAT, may be used to normalize a
number.

The brevity in the statements of these functions is due primarily to the
power of the APL base value and representation operators 1 and T. The use
of these functions is quite simple; even for one floating point conversion it is
generally faster to go through the dialing and signon procedure to execute
FLOAT than it is to convert the number by hand using octaldecimal tables.

Figure G1 is a sample printout.
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Appendix H

RADIAN AND DMS

George Fleming*

The trigonometric functions implemented in the APL system use an in-
put in radians. At least occasionally, original data is in the form of degrees,
minutes, and seconds of arc, so conversion functions to change from one form to
another are desirable. Two such programs are detailed below: (1) RADIAN a
function to change degrees, minutes, and seconds of arc into radians, and
(2) DMS , a function for the reverse. The convenience value of these, especially
when used in conjunction with the trig functions, is very great, and extends the
usefulness of APL to problems which would be only so much busy work if exe-
cuted manually.

I. RADIAN: To change degrees, minutes, and seconds of arc into radians

VRAD+RADIAN DEG V RADIAN [0] V

1 DEG+, DEG

This insures that the input is availv1-._ as a vector.

2 4( ( pDEG )= 3 ) p THREEIN

Input to the function is allowed to be degrees, minutes, and seconds, or
minutes and seconds, or just seconds. In the event that pDEG 3, it
must be changed until pDEG = 3. For example, an input of 4 seconds
may come in as RADIAN 4 or as RADIAN 0 0 4. In the event that
pDEG = 3, control is resumed at statement 6.

[ 3 ] DEG+0 , DEG

DEG is increased by one.

C 14] -( (p DEG)= 3) p THREE/ N

[ 5 ] DEG+0 , DEG

Same as[ 2 ] and C 3].

*GSFC, Processor Development Branch, LP. D.
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[6] THREEIN RAD+0. 017453292519943 x DEC C1] + (DEC [2] + DEG [3]
+60)460

The procedure here is merely to change minutes and seconds into
minutes and fractions of a minute, and then change degrees and this
new quantity into degrees and fractions of a degree, and multiply by
a conversion factor for degrees to radians.

[ 1 ]
C 2 ]
[ 3 ]

4]
C 5]
[6]

VRA DIAN[0] V
V RADA-RADIA II DEG

DECD -,DEG
-( ( PDEG)=3 )PTIIRPEIN
DEG4-0,DEC
-(( pDES)=3 )pTIIRKEI 11
DRC4-0,DEG
TIIR1' EPI:1?AD+0.01 74 5329251 9943xPECI 1 J+(DEGC 2]-0/'0I 37:60 ) GO

V

II. DMS: radians to degrees, minutes, and seconds of arc

V VMS [0]

T60 -DMS RAD; DEG; A ; B; C2; C3

[1] C1+0.01745329519943

Conversion factor, degrees to radians.

[2] C24-0,000290888208666

Conversion factor, minutes to radians.

[3] C34-4.848136811E-6

Conversion factor, seconds to radians.

[4] DEG4-(RAD C1) x (RAD-(A÷C1IRAD)) C1

(A) Cl /RAD : The remainder of RAD Cl is computed, so that
(B) it may be subtracted from RAD, leaving a quantity (RAD -C1 /RAD)

which is an integer number of degrees, expressed in radians.



(C) This quantity is then converted into degrees by dividing by the
conversion factor for degrees to radians.

(D) The above calculations are valid only for values of RAD greater
than one degree, expressed in radians, hence the (RAD Z C1 )
factor.

[ 5] DEC -DEC, (A C2) x (A-(B4-C2 /A)) C2

The steps here are as inC 4 ,only read "minutes" for "degrees." The
final quantity obtained here is in minutes, which is catenated with the
value in degrees computed in [4].

[6] DEC. -DEC, B + C3

The last remainder, B, is seconds (expressed in radians), hence the
simple conversion and catenation with the calculated degrees and
minutes.

[ 7 ]+[ 12 ] . . These statements are necessary to compensate for the
finite accuracy of the system; in particular, they prevent

DMS RADIAN 1 0 0

from returning an answer of

0 60 0

instead of the correct value of 1 0 0 . Also prevented is

DMS RADIAN 0 1 0

returning a value of 0 0 6 0

7DMS[WV
V 760 -DMS RAD ;A ;13;CI;C2;C3

[1] C1.-0 .017453292517943
[2] C2.-0.0002 9 0 8 88208666
[3J Ca.-4.8481 3 6 8 11E6
[4] DEG+(nd1DzCI. ). (RAD-(A4171 I RAD)) iC1
[ 5 3 DEG+DF:G, (A 2C2 )m (A -(0.C2 A ) )+C2
[6] DEG.DEG,13 C3
[7] -(DEG[3]g 5 9 .9999999977 2 5 )A(DEG[3]$60 0000000011E1 ) 40la
1.93 DEC[33,0
[n OF:G[27.11EG[ 2 ]+1
[10] (DEG[2]*5 9 .9997999477 2 5 )A(DEG[21$G0 ) )POUT
[11 1 DEG( 23.0
(12.1 DF:c[11.DRGC 1 +1
[13] OUT G

7
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Appendix I

MISCELLANEOUS APL PROGRAMMED FUNCTIONS

William Alford*

APL is useful for design notation, communication (documentation),
computation, and programming. Although these categories overlap, the
examples chosen here fit primarily into the latter. These programs have
been extracted from largerprogram systems because they indicate several
distinct features of APL.

Function DIV. This function was written to investigate the repeating
decimal series generated from fractions that have prime numbers in the
denominator.

V 54-N DIV A;R;I;Z;X
[1] .9+% '
[2] Xi-R/-A[1]x10
[3] R4-10,c/i-A[2]x24-1R=A[2]
[4] .54-S '0123456789 tz+i]
[5] 3x(x$R)AN$ Th.+ps

v

This function demonstrates a method of generating unlimited decimal pre-
cision.

10 DIV 1 7
.142857

10 DIV 1 600
.0016666666

100 DIV 1 89
.011235955056179775280898876404149438202247191

The parameter, N, is the maximum number of decimal places. A is a
two-component vector. The first component is the fraction numerator, the

* GSFC Processor Development Branch.
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second is the denominator which must be the larger. This function performs
the step by step computations of long division. The program terminates when
the remainder repeats or when the number of decimal places equals N.

Function COS. The function COS demonstrates the use of vector opera-
tions to calculate the Maclaurin Series for the cosine function.

V Z4-COS A
[1] Z4-1--/((3.1415926535891,9-6.28318530717958(A)*2x113)= .12)(113

V

The parameter A must be in radians. The expression within the inner
parenthesis translates any angle into the range between minus and plus pi.
Within this range, this expansion is accurate to 14 or 15 decimal places.

Functions BIP1 and MULT 1. These functions (Figure Il) were written
for algebraic manipulations. BIP1 will raise a polynomial B to the power A.
B is a vector of the polynomial coefficients and A is the scalor power. The
coefficients may be in ascending or descending order and the results will be in
the same order. This function performs repeated polynomial multiplication
using MULT 1.

V CI-A BIP1 B ;I
[1] CI" " I ÷
[ 2] "B514-1+1)/0
[3] -+2,C4-C MULTI. A

V

V LIN4-V1 MULTI. V2 ;I ;B
[ 1 ] B4- ( p , V 1 )+ -1+/-4-p, V2
[2] L/N-4--V2+.x(/,B)pV1,/p0

V

Figure Il

MULT 1 will multiply two polynomials, V1 and V2. This function demon-
strates the use of matrix operati,ins rather than the usual loop operation
(Figure 12).

1 3 5 6 !'UL T1 5 1 3 5

5 16 31 49 36 43 30

1 1 R TP1 5

1 5 10 10 5 1

1 3 1 BTP1 3

1 9 30 45 30 9 1

&lure 12
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Appendix J

BAND PASS FILTER DESIGN

Gary Nooger*

Band pass filters are frequently used in many electrical engineering
applications. The program discussed here is for a band pass constant-k ladder
filter, but the program can easily be extended to include other types of band
pass, band elimination, low pass, and high pass filters.

The problem is to design a series of band pass filters with different band-
widths and center frequencies. By use of APL a considerable amount of calcu-
lation time was saved.

Figure Jl indicates the input-output terminations of the filter: for a
symmetrical filter, the source impedance (Rs) and the load impedance (RI)
are equal.

E SOURCE

Rs

4/VVVV4

FILTER

Figure J1

RL

Figure J2 indicates the attenuation and phase characteristics of the fil-
ter, where the bandwidth is defined at the -3 db cutoff frequencies and is equal
to f2 -f1.

The program was written so that one can enter the source and load im-
pedance value, the lower 3 db cutoff frequency, and the upper 3 db cutoff fre-
quency. The values for the inductances and capacitances are computed and
printed out along with the "T" config,..ration circuit diagram.

Figure J3 indicated the program listing of the program "BPF."

* Goddard Space Flight Center.
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GAIN

0db

3db

PHASE

+180°

0°

180°

- - - - --
.111 111, IIIMMI1W MIIIIM.

I

ft

Figure J2

si 58

FREQUENCY

FREQUENCY



V BPF
[1] 'THIS CIRCUIT IS FOR A BANDPASS CONSTANT-K LADDER FrLTER'
C 2 3 11

[3] 'TYPE R, UNITS IN OHMS'
C4] R4-0

C5]
6]

'TYPE
Fl.n

Fl (LOWER 3 DB CUTOFF PREQ), UNITS IN CYCLES'

C7] 'TYPE F2 (UPPER 3 DB CUTOFF FREQ., UNITS IN CYCLES'
[8]
[9]
[10]

F24-0

"
4.(F1<P2)000NTINUE

C11] ' F1 MUST BE LESS THAN P2'
C:23 0
C1.3) CONTME;P14-3.11415926514
[14] L14-R-1(PIx(F2-F1))
[15] L24-(Rx(F2-F1))+(4xP/xF1xF2)
[16] C14-(F2-171)4(4xRxP/xF1xF2)
[17] C2+1*(PIxRx(P2-F1))
[18] ('Ll = ';Ll;' HENRY')
[19] ('L2 = ';L2;' HENRY')
C20] ('Cl = ';Cl;' FARAD')
C21] ('C2 = ';C2;' FARAD')
E22] 11

[23] ('L1 +2 = ';L1+2;' HENRY')
[24] ('2xCl = ';2xCl;' FARAD')
[25] "
26] ' L1+2 2xC1 2xCl L1+21
[27] ' o - - -wwww

I I I I wwww - - -0'
:213] '

[29] ' 11
[30] '

[31]
I '[32] ' 4-R4

[33] ' L2 w C2'
[314] '

C35] ' < 1'
[36] ' 0 0'
[37] "

V

Figure J3

Figure J4 shows the result of executing the program with a resistance of
600 ohms, a lower 3 db cutoff frequency of 19,000 Hz, and an upper 3 db cutoff
frequency of 21,000 Hz.
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BPF
THIS CIRCUIT IS FOR A BANDPASS CONSTANT-K LADDER FILTER

TYPE R, UNITS IN OHMS
0:

600
TYPE Fl (LOWER 3 DB CUTOFF FREQ),
0:

19000
TYPE F2 (UPPER 3 DB CUTOFF FRECI).
0:

21000

Ll = 0.09549296584 HENRY
L2 = 0.0002393307415 HENRY
Cl = 6.648076152E10 FARAD
C2 = 2.652582385E-7 FARAD

L1i2 = 0.04774648292 HENRY
2xC1 = 1.32961523E-9 FARAD

0

+R-

L1:2
and Cd

2xC1

UNITS IN CYCLES

UNITS IN CYCLES

2xC1

L2 w C2

. I

L1:2
wwww 0

4-R-

0 0

Figure J4

Figure J5 shows the result of executing the program with an illegal con-
dition, i.e. , the lower 3 db cutoff frequency is greater than the upper 3 db cut-
off frequency. In this case an error message is printed out.
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BPF
THIS CIRCUIT IS FOR A BANDPASS CONSTANT-K LADDER FILTER

TYPE R, UNITS IN OHMS
0:

600
TYPE Fl (LOWER 3 DB CUTOFF FREQ), UNITS IN CYCLES
:

20000
TYPE F2 (UPPER 3 DB CUTOFF FREQ), UNITS IN CYCLES
0:

19000

Fl MUST BE LESS THAN F2

Figure J5
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Appendix K

A PROGRAMMING LANGUAGE USED TO MANIPULATE
AVERAGE OF TELEMETRY DATA

H. Mal Morton* and C. Creveling

The data accumulated by satellites and space probes is telemetered to
earth by a radio link, usually as a series of measurements made up by multi-
plying samples taken successively from a number of sensors. The data also
includes certain spacecraft system measurements and timing signals as well.
All subsequent manipulation of this data requires a means of recording the
data streams and indexing them by their common dimension of time. This di-
mension also serves to relate the measurements to spacecraft position and
orientation in space.

A continuous stream of data is represented by the symbol D, which
is a vector of individual measurement in digital form. This vector D is then
ordered into a three-dimensional array, in which the first two dimensions
represent the words and frames of a telemetry sequence, and the third
dimensions becomes a series of sequences.

The utility of this concept, illustrated in Figure K1 is that the standard
APL indexing and operators can be used to index, sort, assemble, reorder,
and manipulate the data. A few of these are shown in the expressions accom-
panying Figure Kl.

* I. B. M. and GSFC
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2

3

FRAMES4

5

6

2 3
WORDS

4 5 6 7 71
SY NC Fr TI ME E E E

SY NC FR
2 PI EXP*I X X X

SY NC
FR
3 P2

EXP*2 P P P

SY NC 4FR
P3 EXP*3 #3 E E

SY NC
FR
5 P4 X E R R

SY NC 6
FR

P5
EX P* 1 X

SY NC PF7 R EXaP6 P 4r ilk

SY NC FR X EX4 P
8 -0 #1 2 I

SEQUENCES

ARRAY OF TELEMETRY DATA

ARRAY OF SYNC PATTERNS

MATRIX OF TIMES

D 4-(8,8,SEQ)p "TELEMETRY DATA STREAM"

SYNC- (8a2)/ [ 2 ] D

TIME -D [1; 4 , 5 ; ]
MATRIX OF EXPERIMENTER # I's DATA (INCLUDING TIME)

EXPERI÷D [;8;],[1] D [1;4,5;],[1] D [2;5;]

Figure K 1 Array of satellite telemetry data.
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